Mitigation of methane emissions from constructed farm wetlands.

نویسندگان

  • Sunitha R Pangala
  • David S Reay
  • Kate V Heal
چکیده

Constructed wetlands are increasingly used for water pollution treatment but may also be sources of the greenhouse gas CH(4). The effect of addition of two potential inhibitors of methanogenesis - iron ochre and gypsum - on net CH(4) emissions was investigated in a constructed wetland treating farm runoff in Scotland, UK. CH(4) fluxes from three 15-m(2) wetland plots were measured between January and July 2008 in large static chambers incorporating a tunable diode laser, with application of 5tonha(-1) ochre and gypsum in May. CH(4) fluxes were also measured from control and ochre- and gypsum-treated wetland sediment cores incubated at constant and varying temperature in the laboratory. Ochre addition suppressed CH(4) emissions by 64+/-13% in the field plot and >90% in laboratory incubations compared to controls. Gypsum application of 5tonha(-1) in the field and laboratory experiments had no effect on CH(4) emissions, but application of 10tonha(-1) to a sediment core reduced CH(4) emissions by 28%. Suppression of CH(4) emissions by ochre application to sediment cores also increased with temperature; the reduction relative to the control increased from 50% at 17.5 degrees C to >90% at 27.5 degrees C. No significant changes in N removal or pH and potentially-toxic metal content of sediments as the result of inhibitor application were detected in the wetland during the study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Farm System Approach to Analyze Greenhouse Gas (ghg) Mitigation Strategies for Ruminant Production Systems

Agriculture is a significant emitter of GHGs. Especially ruminant production systems that contribute substantially to global warming due to the enteric fermentation. Ruminant production systems are often integrated in mixed farm systems, including arable production, grassland systems and possibly energy production, which may provide opportunities for mitigation of GHGs when considered as a whol...

متن کامل

Review of methane mitigation technologies with application to rapid release of methane from the Arctic.

Methane is the most important greenhouse gas after carbon dioxide, with particular influence on near-term climate change. It poses increasing risk in the future from both direct anthropogenic sources and potential rapid release from the Arctic. A range of mitigation (emissions control) technologies have been developed for anthropogenic sources that can be developed for further application, incl...

متن کامل

Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition

Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understa...

متن کامل

Meta-Analysis of Methane Mitigation Strategies: Improved Predictions of Mitigation Potentials and Production Implications

The aim of this study was to use meta-analysis to identify the enteric methane (CH4) mitigation strategy that reduced CH4 emission without lowering production. To this end, a database initially developed was updated, compiling data from 61 publications (233 experiments) for various observations in dairy cattle on effects of hydrogen sink (H-sink), ionophore, lipid and conc...

متن کامل

Does Fall Removal of the Dairy Manure Sludge in a Storage Tank Reduce Subsequent Methane Emissions?

When liquid manure is removed from storages for land application, "sludge" generally remains at the bottom of the tank. This may serve as an inoculum when fresh manure is subsequently added, thereby increasing methane (CH) emissions. Previous pilot-scale studies have shown that completely emptying storages can decrease CH emissions; however, no farm-scale studies have been conducted to quantify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 78 5  شماره 

صفحات  -

تاریخ انتشار 2010